Dynamic Studies of Sweet Family Sugar Transporters through NMR Spectroscopy
نویسندگان
چکیده
منابع مشابه
NMR and EPR studies of membrane transporters.
In order to fulfill their function, membrane transport proteins have to cycle through a number of conformational and/or energetic states. Thus, understanding the role of conformational dynamics seems to be the key for elucidation of the functional mechanism of these proteins. However, membrane proteins in general are often difficult to express heterologously and in sufficient amounts for struct...
متن کاملExploring Transporters within the Small Multidrug Resistance Family Using Solid-State NMR Spectroscopy
Small multidrug resistance (SMR) proteins comprise a family of bacterial secondary active transporters that confer drug resistance to antiseptics and antibiotics. EmrE has emerged as the model protein of the SMR family and an archetype to understand the ion-coupled transport mechanism. The importance of EmrE is further underscored by its proposed role as an evolutionary predecessor to larger tr...
متن کاملIntegrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters
Sugars Will Eventually be Exported Transporter (SWEET) and SemiSWEET are recently characterized families of sugar transporters in eukaryotes and prokaryotes, respectively. SemiSWEETs contain 3 transmembrane helices (TMHs), while SWEETs contain 7. Here, we performed sequence-based comprehensive analyses for SWEETs and SemiSWEETs across the biosphere. In total, 3,249 proteins were identified and ...
متن کاملMammalian Sugar Transporters
Glucose represents the major energy source of mammalian cells. Due to its hydrophilic nature, glucose requires specific transporters in order to cross cellular membranes. Such transport is, in the case of glucose and also other monosaccharides, mediated by energy-coupled as well as facilitative mechanisms represented by protein families of sodium-driven sugar cotransporters (SGLTs) and glucose ...
متن کاملTonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2017
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.11.2719